- Implementado soft delete para preguntas
- Nuevas columnas: is_deleted (boolean), updated_at (timestamp)
- Migración SQL: add_soft_delete_to_questions.sql
- Endpoint DELETE marca preguntas como eliminadas en lugar de borrarlas
- GET /api/checklists/{id} filtra preguntas eliminadas (is_deleted=false)
- Validación de subpreguntas activas antes de eliminar
- Índices agregados para optimizar queries
- Mantiene integridad de respuestas históricas y PDFs generados
- Permite limpiar checklists sin afectar inspecciones completadas
Backend (1.0.64):
- Renombrado campo client_name a order_number en modelo Inspection
- Actualizado InspectionBase schema con nuevo campo order_number
- Comentario descriptivo: "Número de pedido asociado a la inspección"
Frontend (1.0.58):
- Renombrado client_name a order_number en toda la aplicación
- Actualizado label: "Nombre del Cliente" → "Nº de Pedido"
- Actualizado placeholder: "Juan Pérez" → "PED-12345"
- Actualizado título sección: "Información del Cliente" → "Información del Pedido"
- Actualizado filtro de búsqueda para incluir número de pedido
- Actualizado texto de búsqueda: "cliente" → "Nº pedido"
Database:
- Script de migración: rename_client_name_to_order_number.sql
- Comando: ALTER TABLE inspections RENAME COLUMN client_name TO order_number
Nota: Ejecutar migración SQL antes de usar esta versión
Backend:
- Agregar campo ai_prompt a tabla questions
- Endpoint analyze-image recibe custom_prompt
- Validación de imagen apropiada (sugiere cambiar foto si no corresponde)
- Script de migración migrate_ai_prompt.py
Frontend:
- Campo de texto para configurar prompt de IA en editor de preguntas
- Envía custom_prompt al endpoint de análisis
- UI con fondo morado para sección de IA
La IA ahora analiza fotos según el contexto específico de cada pregunta
y sugiere cambiar la imagen si no corresponde al componente solicitado.